

GANDHI ACADEMY OF TECHNOLOGY AND ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING

Subject: ENGINEERING MECHANICS

- CO1: Analyze Forces and Moments: Understand and apply principles of static equilibrium to analyze forces and moments acting on structures and systems
- CO₂: Predict Motion: Analyze and predict the motion of particles and rigid bodies using principles of dynamics and kinematics.
- CO₃: Solve Engineering Problems: Apply mathematical techniques to solve engineering problems related to forces, motion, and equilibrium in various contexts
- CO₄: Design Simple Structures: Design and analyze simple structures and machine components, considering factors like stress, strain, and material properties.
- CO_s: Apply Vector Mechanics: Use vector mechanics to represent and analyze forces & moments in two and three dimensions.
- CO₆: Understand Material Behavior: Comprehend the behavior of materials under differ loading conditions, including stress and deformation analysis.

Subject: BASIC MECHANICAL ENGINEERING

- CO₁: Comprehending the Law of Thermodynamics
- CO₂: Being aware of how crucial thermodynamics is to IC engines, power plants, refrigerators, and Heat pump.
- CO₃: Being aware of fluid mechanics and heat transfer concepts
- CO₄: Recognizing the functions of engineering materials
- CO₆: Have a fundamental understanding of welding, Casting, Forming and other manufacturing techniques.
- CO₆: Recognizing fundamental power transfer mechanisms and aware of the fundamental robotics system.

Subject: MECHANICS OF SOLID

- CO₁: Determine the stresses, strains and displacements of structures by tensorial and graphical (Mohr's circle) approaches
- CO₂: Analyze the strength of materials using stress-strain relationships for structural and thermal loading.
- CO₃: Perform basic design of shafts subjected to torsional loading and analyze beams subjected to bending moments
- CO₄: Determine the deformation of structures subjected to various loading conditions using strain energy methods.
- CO_s. Estimate the strength of thin cylinders, spherical vessel and columns & appreciate the theories of failures and its relevance in mechanical design
- CO₆: Understand the basic concept of analysis and design of members subjected to

Subject: FLUID MECHANICS AND HYDRAULLIC MACHINES Understand the various properties of fluids, their influence on fluid motion at analyze a variety of problems in fluid statics and dynamics.

- CO2: Calculate the forces that act on submerged planes and curves CO3: Analyze various types of fluid flows.
- CO₄: Apply the integral forms of the three fundamental laws of fluid mechanics to turbulent and laminar flow through pipes.
- CO₅: Measure the quantities of fluid flowing in pipes, tanks and channels
- CO₆: Solve kinematic problems such as finding particle paths and streamlin

Subject: KINEMATICS & DYNAMICS OF MACHINES CO.: Understand fundamentals of simple mechanisms, their inversions and their

- suitability for Specific outputs
- CO₂: Analyze position, velocity and acceleration of linkages in mechanisms by graphical and Analytical methods.
- CO₃: Apply fundamentals of gear theory as a prerequisite for gear design
- CO₄: Estimate various forces and moments acting in reciprocating parts of an engine CO₅: Analyze the effect of friction in mechanical power transmission systems like clutch.
- belt.Rope and chain drives
- CO₆: Understand working principles of several types of brakes and dynamon

Subject: ENGINEERING THERMODYNAMICS

- CO₁: Understand the concepts of first law of thermodynamics to identify closed and ope
- CO₂: The concept of second law of thermodynamics to understand fundamental concepts of Unsteady flow, entropy generation and property relations
- CO₃: Develop a fundamental understanding of reversible work, energy balance and second efficiency applied to various real-life applications
- CO₄: Analyze the performance of gas and vapor power cycles and identify methods to improve thermodynamic performance.
- CO₆: Solve problems based on the Brayton cycle; the Brayton cycle with regeneration; & the Brayton cycle with intercooling, reheating, and regeneration.

 CO₆: Explain working principle of air compressors and their applications in engineering

Subject: INTRODUCTION TO PHYSICAL METALLURGY AND **ENGINEERING MATERIALS**

- CO.:Understa nd basic structure properties of metals, mechanism of crystallization and imperfection in crystals.
- CO₂:Justify the material behavior and the irproperties.
- CO₃:Get basic foundation for learning material technology and understand the advances in the material development.
- CO₄:Acquire knowledge on properties and structure offer rousand non-ferrousalloy sand to select suitable material forvarious engineering applications.
- CO₅:Analyzethevariousphasetransformationiscommonlyusedmaterials
- CO₆:Determinethereinforcementcontentinapolymercompositeandanalyze

Subject: ADVANCE MECHANICS OF SOLIDS

- CO₁:Be able to carry out stress and strain analyses of different load bearing elements and/or constructions
- CO₂:Understand the response of individual elements to the applied loads in both el and plastic regime and after unloading
- ditu plastic regime and enter an account of the control of the con
- CO.:Be able to dimension various elements of constructions subjected to a wide range of loading conditions.
- COs:Compute the deflection of beams and shafts under static loading and stresses in thin walled cylindrical and spherical vessels.
- CO₆:Be able to apply the knowledge on calculation of real constructions

Subject: MECHANISMS AND MACHINES

- CO₁:Classifying different types of steering mechanism.
- CO2:Explanation of different follower motion of cam profile
- CO₃:Design of governor and application in an auto
- CO4:Description of turning moment diagram for flywheel and engine
- CO₅:Description of balancing concept acting on different types of engines CO₆:Analyzing concepts of Gyroscope and different types of mechanical vibrations

Subject: BASIC MANUFACTURING PROCESSES CO,:Know the various basic manufacturing processes used in industry Materials into finished products.

- CO₂:Apply practical understanding to use different casting methods with their process details, Application and limitations.
- a:Classify & explain in detail different welding methods with their brief introduction about Brazing and soldering.
- CO₄:Understand the powder metallurgy process with its typical advantages, limit and Industrial applications
- COs-Differentiate between various metal forming process such as forging, hot and cold rolling Process.
- CO₆:Learn extrusion process, its types and use of sheet metal in making products

Subject: HEAT TRANSFER

- Remember the concept of different modes of heat transfer CO2:Understand the concept of unsteady state heat conduction
- CO₃:Solve laminar and turbulent condition of external and internal heat flow
- CO₄:Analyze radiative heat transfer in non-absorbing medium
- CO₅Evaluate the type of condensation using the correlations on vario
- CO₈:Calculate overall heat transfer coefficient, fouling factor, LMTD and NTU analysis of

Subject: AUTOMOBILE ENGINEERING

- CO:Students get the idea of operational method of different automobile parts at the end of the course.
- CO₂:The differentiation between rare axle and transmission system can be done by
- CO₃:Students are able to learn the contour of gears along with theory of various ge CO₄Describe the necessity of braking system in addition to steering system in
- CO₅:Students learn the significance of electrical ignition system in modern automo
- CO₆:Analysis of recent progression in automobiles along with explaining the electronic

Subject: DESIGN OF MACHINE ELEMENTS

- CO1: To understand and apply principles of gear design to spur gears and industrial spur gear boxes
- CO₂: To become proficient in Design of Helical and Bevel Gear
- CO₃: To develop capability to analyze Rolling contact bearing and its selection from manufacturer's Catalogue.
- CO₄: To learn a skill to design worm gear box for various industrial applications
- CO₅: To inculcate an ability to design belt drives and selection of belt, rope and chain
- CO₆: To achieve an expertise in design of Sliding contact bearing in industrial application

Subject: SMART AND COMPOSITE MATERIALS

- CO₁: Students get the vision and exposure onthe newer smart materials
- CO2: Identify, describe and evaluate the properties of fibre reinforcements, polymer matrix materials and commercial composites
- CO₃: Develop competency in one or more common composite manufacturing technique and be able to select the appropriate technique for manufacture of fibre-reinforced
- CO₄: Analyse the elastic properties and simulate the mechanical performance of composi laminates; and understand and predict the failure behaviour of fibre-reinforced composites
- COs. Apply knowledge of composite mechanical performance and manufacturing methods to a composites design project
 COs. Critique and synthesize the literature and apply the knowledge gained from the course in the design and application of fibre-reinforced composites.

Subject: MACHINING SCIENCE AND TECHNOLOGY

- CO₁: Understand the cutting tool geometry, mechanism of chip formation & mechanics of orthogonal cutting.
- CO₂: Identify basic parts and operations of machine tools including lathe, shaper, planer, drilling, boring, milling and grinding machine
- CO₃: Understand the importance of non-traditional machining processes and will be able classify various processes.
- CO₄: Gain thorough knowledge and evaluate tool geometry and tool materials. CO₅: Know and appraising about advanced manufacturing processes
- CO6: Follow certain advancements of finishing process like honing copying in the field of machining principles and machine tools

ubject: MICRO ELECTRO-MECHANICAL SYSTEMS

- CO₁: Understand the operation of micro devices, micro systems and their applications. CO₂: Apply scaling laws used extensively in the conceptual design of micro devices and
- CO₃: Choose bulk micromachining and surface micromachining for MEMS fabrication
- CO₄: Simplify the design of micro devices, micro systems using the MEMS fabrica CO₅: Acquire scope and recent development of the science and technology of micro and
- COs: Gain knowledge on underlying the operation principles and design of micro and na systems.

Subject: PRODUCT DESIGN AND PRODUCTION TOOLING

Describe the characteristics used for product design and development CO₂: Assess the customer requirements in product design.

nano systen

- CO3: Apply structural approach to concept generation, selection and testing
- CO₄: Identify various aspects of design such as industrial design,design for manufacturer, assembly service and quality and product architecture.
- CO₅: Explain various principles and technologies used for preparation of prototypes.
- CO₆: Apply knowledge of production tooling to create efficient and reliable manufacturing set ups.

Subject: REFRIGERATION AND AIR-CONDITIONING

- CO₁: Apply the concepts of thermodynamics to solve problems related to air refrigeration cycles.
- CO₂: Analyze vapor compression refrigeration system and identify methods for
- CO3: Study the working principles of vapor absorption and the rmoelectricrefrigeration
- $CO_6: \ Analyze \ the \ air \ conditioning \ processes \ using \ principles \ of \ psychometric.$ $CO_6: \ Evaluate \ cooling \ and \ heating \ loads \ in \ an \ air-conditioning \ system.$